Energetics of DNA end binding by E.coli RecBC and RecBCD helicases indicate loop formation in the 3'-single-stranded DNA tail.
نویسندگان
چکیده
We examined the equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends possessing pre-existing single-stranded (ss) DNA ((dT)(n)) tails varying in length (n=0 to 20 nucleotides) in order to determine the contributions of both the 3' and 5' single strands to the energetics of complex formation. Protein binding was monitored by the fluorescence enhancement of a reference DNA labeled at its end with a Cy3 fluorophore. Binding to unlabeled DNA was examined by competition titrations with the Cy3-labeled reference DNA. The affinities of both RecBC and RecBCD increase as the 3'-(dT)(n) tail length increases from zero to six nucleotides, but then decrease dramatically as the 3'-(dT)(n) tail length increases from six to 20 nucleotides. Isothermal titration calorimetry experiments with RecBC show that the binding enthalpy is negative and increases in magnitude with increasing 3'-(dT)(n) tail length up to n=6 nucleotides, but remains constant for n > or =6. Hence, the decrease in binding affinity for 3'-(dT)(n) tail lengths with n > or =6 is due to an unfavorable entropic contribution. RecBC binds optimally to duplex DNA with (dT)6 tails on both the 3' and 5'-ends while RecBCD prefers duplex DNA with 3'-(dT)6 and 5'-(dT)10 tails. These data suggest that both RecBC and RecBCD helicases can destabilize or "melt out" six base-pairs upon binding to a blunt DNA duplex end in the absence of ATP. These results also provide the first evidence that a loop in the 3'-ssDNA tail can form upon binding of RecBC or RecBCD with DNA duplexes containing a pre-formed 3'-ssDNA tail with n > or =6 nucleotides. Such loops may be representative of those hypothesized to form upon interaction of a Chi site contained within the unwound 3' ss-DNA tail with the RecC subunit during DNA unwinding.
منابع مشابه
Probing 3'-ssDNA loop formation in E. coli RecBCD/RecBC-DNA complexes using non-natural DNA: a model for "Chi" recognition complexes.
The equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends containing varying lengths of polyethylene glycol (PEG) spacers within pre-formed 3'-single-stranded (ss) DNA ((dT)n) tails was studied. These studies were designed to test a previous proposal that the 3'-(dT)n tail can be looped out upon binding RecBC and RecBCD for 3'-ssDNA tails with n>or=6 nucleotides....
متن کاملKinetic control of Mg2+-dependent melting of duplex DNA ends by Escherichia coli RecBC.
Escherichia coli RecBCD is a highly processive DNA helicase involved in double-strand break repair and recombination that possesses two helicase/translocase subunits with opposite translocation directionality (RecB (3' to 5') and RecD (5' to 3')). RecBCD has been shown to melt out approximately 5-6 bp upon binding to a blunt-ended duplex DNA in a Mg(2+)-dependent, but ATP-independent reaction. ...
متن کاملEscherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor
E. coli RecBCD is a molecular motor with ATPase, DNA helicase and nuclease activities. This heterotrimeric enzyme initiates repair of double-stranded DNA (dsDNA) breaks via homologous recombination and degrades foreign DNA1. RecBCD has two motor subunits, RecB (134 kDa), a 3′→5′ DNA helicase and nuclease, and RecD (67 kDa), a 5′→3′ DNA helicase2–4. RecC (129 kDa) is a processivity and regulator...
متن کاملInfluence of DNA End Structure on the Mechanism of Initiation of DNA Unwinding by the E. coli RecBCD and RecBC Helicases
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the co...
متن کاملInfluence of DNA end structure on the mechanism of initiation of DNA unwinding by the Escherichia coli RecBCD and RecBC helicases.
Escherichia coli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3'-to-5' translocase, and RecD, a 5'-to-3' translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 352 4 شماره
صفحات -
تاریخ انتشار 2005